Files
GP1-DirectX/project/resources/SimpleDiffuse.fx
2024-12-25 03:14:05 +01:00

141 lines
4.1 KiB
HLSL

SamplerState gSampleState : SampleState;
RasterizerState gRasterizerState : RastState;
float4x4 gWorldViewProj : WorldViewProjection;
float4x4 gWorldMatrix : WorldMatrix;
texture2D gDiffuseMap : DiffuseMap;
texture2D gNormalMap : Normal;
texture2D gSpecularMap : Specular;
texture2D gGlossMap : Gloss;
float3 gLightDirection : LightDirection;
float3 gLightColor : LightColor;
float3 gCameraPosition : CameraPosition;
bool gUseNormal : UseNormal;
static const float3 gAmbient = float3(.03f, .03f, .03f);
static const float gLightIntensity = 7.f;
static const float PI = 3.14159f;
static const float gSpecularReflectance = 1.f;
static const float gShininess = 25.f;
//Input output
struct VS_INPUT {
float3 Position : POSITION;
float2 TexCoord : TEXCOORD;
float3 Normal : NORMAL;
float3 Tangent : TANGENT;
};
struct VS_OUTPUT {
float4 Position : SV_POSITION;
float4 WorldPosition : WORLDPOSITION;
float2 TexCoord : TEXCOORD;
float3 Normal : NORMAL;
float3 Tangent : TANGENT;
};
//----------------------
// Rasterizer state
//----------------------
// RasterizerState gRasterizerState
// {
// CullMode = none;
// FrontCounterClockwise = false; //default
// };
//Vertex shader
VS_OUTPUT VS(VS_INPUT input){
VS_OUTPUT output = (VS_OUTPUT)0;
output.Position = mul(float4(input.Position, 1.f), gWorldViewProj);
output.WorldPosition = mul(float4(input.Position, 1.f), gWorldMatrix);
output.TexCoord = input.TexCoord;
output.Normal = mul(input.Normal, (float3x3) gWorldMatrix);
output.Tangent = mul(input.Tangent, (float3x3) gWorldMatrix);
return output;
}
float3 Phong(float ks, float exp, float3 l, float3 v, float3 n)
{
float3 reflected = reflect(l, n);
float cosAngle = dot(reflected, v);
return ks * pow(max(0.f, cosAngle), exp) * gLightColor;
}
float3 Lambert(float kd, float3 cd)
{
return (kd * cd) / PI;
}
float3 Shade(VS_OUTPUT input)
{
// Sample diffuse, specular, and gloss maps
float3 diffuseSample = gDiffuseMap.Sample(gSampleState, input.TexCoord).rgb;
float3 specularSample = gSpecularMap.Sample(gSampleState, input.TexCoord).rgb;
float glossSample = gGlossMap.Sample(gSampleState, input.TexCoord).x;
float3 normalSample = gNormalMap.Sample(gSampleState, input.TexCoord).rgb;
// Compute inversed view and light directions
float3 invViewDirection = normalize(gCameraPosition - input.WorldPosition.xyz);
float3 invLightDirection = -gLightDirection;
// Compute tangent space axes if normal mapping is used
float3 normal = input.Normal;
if (gUseNormal) {
float3 binormal = cross(input.Normal, input.Tangent);
float3x3 tangentSpaceAxis = float3x3(input.Tangent, binormal, input.Normal);
// Sample and transform normal map
normal = float3(2.f * normalSample.x - 1.f,
2.f * normalSample.y - 1.f,
2.f * normalSample.z - 1.f);
normal = mul(normal, tangentSpaceAxis);
}
// Compute Lambert diffuse lighting
float3 diffuse = Lambert(gLightIntensity, diffuseSample);
// Compute Phong specular lighting
float ks = (specularSample.x + specularSample.y + specularSample.z) / 3.f;
float3 specular = Phong(ks, glossSample * gShininess, invLightDirection, invViewDirection, normal);
// Compute observed area based on the cosine of the light angle
float cosAngle = dot(invLightDirection, normal);
float3 observedArea = float3(cosAngle, cosAngle, cosAngle);
// Combine lighting components
float3 color = saturate(diffuse * observedArea + specular + gAmbient * cosAngle);
return color;
}
float4 PS(VS_OUTPUT input) : SV_TARGET{
return gDiffuseMap.Sample(gSampleState, input.TexCoord);
}
DepthStencilState gDepthStencilState
{
//enable
DepthEnable = true;
DepthWriteMask = ALL;
DepthFunc = LESS;
//stencil
StencilEnable = true;
};
technique11 DefaultTechnique{
pass P0 {
SetDepthStencilState(gDepthStencilState, 0);
SetRasterizerState(gRasterizerState);
SetVertexShader( CompileShader( vs_5_0, VS() ) );
SetGeometryShader( NULL );
SetPixelShader( CompileShader( ps_5_0, PS() ) );
}
}