Files
GP1-Raytracer/project/src/BRDFs.h
2024-10-16 10:15:16 +02:00

93 lines
3.6 KiB
C++

#pragma once
#include "Maths.h"
namespace dae {
namespace BRDF {
/**
* \param kd Diffuse Reflection Coefficient
* \param cd Diffuse Color
* \return Lambert Diffuse Color
*/
static ColorRGB Lambert(float kd, const ColorRGB &cd) {
return (kd / PI) * cd;
}
static ColorRGB Lambert(const ColorRGB &kd, const ColorRGB &cd) {
return (kd * PI) * cd;
}
/**
* \brief todo
* \param ks Specular Reflection Coefficient
* \param exp Phong Exponent
* \param l Incoming (incident) Light Direction
* \param v View Direction
* \param n Normal of the Surface
* \return Phong Specular Color
*/
static ColorRGB Phong(float ks, float exp, const Vector3 &l, const Vector3 &v, const Vector3 &n) {
Vector3 reflect{l - 2 * Vector3::Dot(n, l) * n};
float cosAngle{Vector3::Dot(reflect, v)};
return {ks * powf(std::max(0.f, cosAngle), exp) * colors::White};
}
/**
* \brief BRDF Fresnel Function >> Schlick
* \param h Normalized Halfvector between View and Light directions
* \param v Normalized View direction
* \param f0 Base reflectivity of a surface based on IOR (Indices Of Refrection), this is different for Dielectrics (Non-Metal) and Conductors (Metal)
* \return
*/
static ColorRGB FresnelFunction_Schlick(const Vector3 &h, const Vector3 &v, const ColorRGB &f0) {
const float base = std::pow(1 - Vector3::Dot(h, v), 5);
auto returnValue{f0 + (colors::White - f0) * base};
return returnValue;
}
/**
* \brief BRDF NormalDistribution >> Trowbridge-Reitz GGX (UE4 implemetation - squared(roughness))
* \param n Surface normal
* \param h Normalized half vector
* \param roughness Roughness of the material
* \return BRDF Normal Distribution Term using Trowbridge-Reitz GGX
*/
static float NormalDistribution_GGX(const Vector3 &n, const Vector3 &h, float roughness) {
const float a = roughness * roughness;
const float a2 = a * a;
const float dot{Vector3::Dot(n, h)};
const float div{dot * dot * (a2 - 1) + 1};
return a2 / (M_PI * div * div);
}
/**
* \brief BRDF Geometry Function >> Schlick GGX (Direct Lighting + UE4 implementation - squared(roughness))
* \param n Normal of the surface
* \param v Normalized view direction
* \param roughness Roughness of the material
* \return BRDF Geometry Term using SchlickGGX
*/
static float GeometryFunction_SchlickGGX(const Vector3 &n, const Vector3 &v, float roughness) {
float cosAngle{ Vector3::Dot(n,v) };
float k{ (roughness + 1) * (roughness + 1) / 8 };
return {cosAngle / (cosAngle * (1 - k) + k) };
}
/**
* \brief BRDF Geometry Function >> Smith (Direct Lighting)
* \param n Normal of the surface
* \param v Normalized view direction
* \param l Normalized light direction
* \param roughness Roughness of the material
* \return BRDF Geometry Term using Smith (> SchlickGGX(n,v,roughness) * SchlickGGX(n,l,roughness))
*/
static float GeometryFunction_Smith(const Vector3 &n, const Vector3 &v, const Vector3 &l, float roughness) {
return { GeometryFunction_SchlickGGX(n,v,roughness) * GeometryFunction_SchlickGGX(n,l,roughness) };
}
}
}