Initial commit

This commit is contained in:
github-classroom[bot]
2025-05-08 08:33:11 +00:00
committed by GitHub
commit 294e9ab735
188 changed files with 65381 additions and 0 deletions

View File

@@ -0,0 +1,169 @@
/*
* Copyright (c) 2006-2007 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_DISTANCE_JOINT_H
#define B2_DISTANCE_JOINT_H
#include <Box2D/Dynamics/Joints/b2Joint.h>
/// Distance joint definition. This requires defining an
/// anchor point on both bodies and the non-zero length of the
/// distance joint. The definition uses local anchor points
/// so that the initial configuration can violate the constraint
/// slightly. This helps when saving and loading a game.
/// @warning Do not use a zero or short length.
struct b2DistanceJointDef : public b2JointDef
{
b2DistanceJointDef()
{
type = e_distanceJoint;
localAnchorA.Set(0.0f, 0.0f);
localAnchorB.Set(0.0f, 0.0f);
length = 1.0f;
frequencyHz = 0.0f;
dampingRatio = 0.0f;
}
/// Initialize the bodies, anchors, and length using the world
/// anchors.
void Initialize(b2Body* bodyA, b2Body* bodyB,
const b2Vec2& anchorA, const b2Vec2& anchorB);
/// The local anchor point relative to bodyA's origin.
b2Vec2 localAnchorA;
/// The local anchor point relative to bodyB's origin.
b2Vec2 localAnchorB;
/// The natural length between the anchor points.
float32 length;
/// The mass-spring-damper frequency in Hertz. A value of 0
/// disables softness.
float32 frequencyHz;
/// The damping ratio. 0 = no damping, 1 = critical damping.
float32 dampingRatio;
};
/// A distance joint constrains two points on two bodies
/// to remain at a fixed distance from each other. You can view
/// this as a massless, rigid rod.
class b2DistanceJoint : public b2Joint
{
public:
b2Vec2 GetAnchorA() const;
b2Vec2 GetAnchorB() const;
/// Get the reaction force given the inverse time step.
/// Unit is N.
b2Vec2 GetReactionForce(float32 inv_dt) const;
/// Get the reaction torque given the inverse time step.
/// Unit is N*m. This is always zero for a distance joint.
float32 GetReactionTorque(float32 inv_dt) const;
/// The local anchor point relative to bodyA's origin.
const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
/// The local anchor point relative to bodyB's origin.
const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
/// Set/get the natural length.
/// Manipulating the length can lead to non-physical behavior when the frequency is zero.
void SetLength(float32 length);
float32 GetLength() const;
/// Set/get frequency in Hz.
void SetFrequency(float32 hz);
float32 GetFrequency() const;
/// Set/get damping ratio.
void SetDampingRatio(float32 ratio);
float32 GetDampingRatio() const;
/// Dump joint to dmLog
void Dump();
protected:
friend class b2Joint;
b2DistanceJoint(const b2DistanceJointDef* data);
void InitVelocityConstraints(const b2SolverData& data);
void SolveVelocityConstraints(const b2SolverData& data);
bool SolvePositionConstraints(const b2SolverData& data);
float32 m_frequencyHz;
float32 m_dampingRatio;
float32 m_bias;
// Solver shared
b2Vec2 m_localAnchorA;
b2Vec2 m_localAnchorB;
float32 m_gamma;
float32 m_impulse;
float32 m_length;
// Solver temp
int32 m_indexA;
int32 m_indexB;
b2Vec2 m_u;
b2Vec2 m_rA;
b2Vec2 m_rB;
b2Vec2 m_localCenterA;
b2Vec2 m_localCenterB;
float32 m_invMassA;
float32 m_invMassB;
float32 m_invIA;
float32 m_invIB;
float32 m_mass;
};
inline void b2DistanceJoint::SetLength(float32 length)
{
m_length = length;
}
inline float32 b2DistanceJoint::GetLength() const
{
return m_length;
}
inline void b2DistanceJoint::SetFrequency(float32 hz)
{
m_frequencyHz = hz;
}
inline float32 b2DistanceJoint::GetFrequency() const
{
return m_frequencyHz;
}
inline void b2DistanceJoint::SetDampingRatio(float32 ratio)
{
m_dampingRatio = ratio;
}
inline float32 b2DistanceJoint::GetDampingRatio() const
{
return m_dampingRatio;
}
#endif

View File

@@ -0,0 +1,119 @@
/*
* Copyright (c) 2006-2007 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_FRICTION_JOINT_H
#define B2_FRICTION_JOINT_H
#include <Box2D/Dynamics/Joints/b2Joint.h>
/// Friction joint definition.
struct b2FrictionJointDef : public b2JointDef
{
b2FrictionJointDef()
{
type = e_frictionJoint;
localAnchorA.SetZero();
localAnchorB.SetZero();
maxForce = 0.0f;
maxTorque = 0.0f;
}
/// Initialize the bodies, anchors, axis, and reference angle using the world
/// anchor and world axis.
void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor);
/// The local anchor point relative to bodyA's origin.
b2Vec2 localAnchorA;
/// The local anchor point relative to bodyB's origin.
b2Vec2 localAnchorB;
/// The maximum friction force in N.
float32 maxForce;
/// The maximum friction torque in N-m.
float32 maxTorque;
};
/// Friction joint. This is used for top-down friction.
/// It provides 2D translational friction and angular friction.
class b2FrictionJoint : public b2Joint
{
public:
b2Vec2 GetAnchorA() const;
b2Vec2 GetAnchorB() const;
b2Vec2 GetReactionForce(float32 inv_dt) const;
float32 GetReactionTorque(float32 inv_dt) const;
/// The local anchor point relative to bodyA's origin.
const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
/// The local anchor point relative to bodyB's origin.
const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
/// Set the maximum friction force in N.
void SetMaxForce(float32 force);
/// Get the maximum friction force in N.
float32 GetMaxForce() const;
/// Set the maximum friction torque in N*m.
void SetMaxTorque(float32 torque);
/// Get the maximum friction torque in N*m.
float32 GetMaxTorque() const;
/// Dump joint to dmLog
void Dump();
protected:
friend class b2Joint;
b2FrictionJoint(const b2FrictionJointDef* def);
void InitVelocityConstraints(const b2SolverData& data);
void SolveVelocityConstraints(const b2SolverData& data);
bool SolvePositionConstraints(const b2SolverData& data);
b2Vec2 m_localAnchorA;
b2Vec2 m_localAnchorB;
// Solver shared
b2Vec2 m_linearImpulse;
float32 m_angularImpulse;
float32 m_maxForce;
float32 m_maxTorque;
// Solver temp
int32 m_indexA;
int32 m_indexB;
b2Vec2 m_rA;
b2Vec2 m_rB;
b2Vec2 m_localCenterA;
b2Vec2 m_localCenterB;
float32 m_invMassA;
float32 m_invMassB;
float32 m_invIA;
float32 m_invIB;
b2Mat22 m_linearMass;
float32 m_angularMass;
};
#endif

View File

@@ -0,0 +1,125 @@
/*
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_GEAR_JOINT_H
#define B2_GEAR_JOINT_H
#include <Box2D/Dynamics/Joints/b2Joint.h>
/// Gear joint definition. This definition requires two existing
/// revolute or prismatic joints (any combination will work).
struct b2GearJointDef : public b2JointDef
{
b2GearJointDef()
{
type = e_gearJoint;
joint1 = NULL;
joint2 = NULL;
ratio = 1.0f;
}
/// The first revolute/prismatic joint attached to the gear joint.
b2Joint* joint1;
/// The second revolute/prismatic joint attached to the gear joint.
b2Joint* joint2;
/// The gear ratio.
/// @see b2GearJoint for explanation.
float32 ratio;
};
/// A gear joint is used to connect two joints together. Either joint
/// can be a revolute or prismatic joint. You specify a gear ratio
/// to bind the motions together:
/// coordinate1 + ratio * coordinate2 = constant
/// The ratio can be negative or positive. If one joint is a revolute joint
/// and the other joint is a prismatic joint, then the ratio will have units
/// of length or units of 1/length.
/// @warning You have to manually destroy the gear joint if joint1 or joint2
/// is destroyed.
class b2GearJoint : public b2Joint
{
public:
b2Vec2 GetAnchorA() const;
b2Vec2 GetAnchorB() const;
b2Vec2 GetReactionForce(float32 inv_dt) const;
float32 GetReactionTorque(float32 inv_dt) const;
/// Get the first joint.
b2Joint* GetJoint1() { return m_joint1; }
/// Get the second joint.
b2Joint* GetJoint2() { return m_joint2; }
/// Set/Get the gear ratio.
void SetRatio(float32 ratio);
float32 GetRatio() const;
/// Dump joint to dmLog
void Dump();
protected:
friend class b2Joint;
b2GearJoint(const b2GearJointDef* data);
void InitVelocityConstraints(const b2SolverData& data);
void SolveVelocityConstraints(const b2SolverData& data);
bool SolvePositionConstraints(const b2SolverData& data);
b2Joint* m_joint1;
b2Joint* m_joint2;
b2JointType m_typeA;
b2JointType m_typeB;
// Body A is connected to body C
// Body B is connected to body D
b2Body* m_bodyC;
b2Body* m_bodyD;
// Solver shared
b2Vec2 m_localAnchorA;
b2Vec2 m_localAnchorB;
b2Vec2 m_localAnchorC;
b2Vec2 m_localAnchorD;
b2Vec2 m_localAxisC;
b2Vec2 m_localAxisD;
float32 m_referenceAngleA;
float32 m_referenceAngleB;
float32 m_constant;
float32 m_ratio;
float32 m_impulse;
// Solver temp
int32 m_indexA, m_indexB, m_indexC, m_indexD;
b2Vec2 m_lcA, m_lcB, m_lcC, m_lcD;
float32 m_mA, m_mB, m_mC, m_mD;
float32 m_iA, m_iB, m_iC, m_iD;
b2Vec2 m_JvAC, m_JvBD;
float32 m_JwA, m_JwB, m_JwC, m_JwD;
float32 m_mass;
};
#endif

View File

@@ -0,0 +1,226 @@
/*
* Copyright (c) 2006-2007 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_JOINT_H
#define B2_JOINT_H
#include <Box2D/Common/b2Math.h>
class b2Body;
class b2Joint;
struct b2SolverData;
class b2BlockAllocator;
enum b2JointType
{
e_unknownJoint,
e_revoluteJoint,
e_prismaticJoint,
e_distanceJoint,
e_pulleyJoint,
e_mouseJoint,
e_gearJoint,
e_wheelJoint,
e_weldJoint,
e_frictionJoint,
e_ropeJoint,
e_motorJoint
};
enum b2LimitState
{
e_inactiveLimit,
e_atLowerLimit,
e_atUpperLimit,
e_equalLimits
};
struct b2Jacobian
{
b2Vec2 linear;
float32 angularA;
float32 angularB;
};
/// A joint edge is used to connect bodies and joints together
/// in a joint graph where each body is a node and each joint
/// is an edge. A joint edge belongs to a doubly linked list
/// maintained in each attached body. Each joint has two joint
/// nodes, one for each attached body.
struct b2JointEdge
{
b2Body* other; ///< provides quick access to the other body attached.
b2Joint* joint; ///< the joint
b2JointEdge* prev; ///< the previous joint edge in the body's joint list
b2JointEdge* next; ///< the next joint edge in the body's joint list
};
/// Joint definitions are used to construct joints.
struct b2JointDef
{
b2JointDef()
{
type = e_unknownJoint;
userData = NULL;
bodyA = NULL;
bodyB = NULL;
collideConnected = false;
}
/// The joint type is set automatically for concrete joint types.
b2JointType type;
/// Use this to attach application specific data to your joints.
void* userData;
/// The first attached body.
b2Body* bodyA;
/// The second attached body.
b2Body* bodyB;
/// Set this flag to true if the attached bodies should collide.
bool collideConnected;
};
/// The base joint class. Joints are used to constraint two bodies together in
/// various fashions. Some joints also feature limits and motors.
class b2Joint
{
public:
/// Get the type of the concrete joint.
b2JointType GetType() const;
/// Get the first body attached to this joint.
b2Body* GetBodyA();
/// Get the second body attached to this joint.
b2Body* GetBodyB();
/// Get the anchor point on bodyA in world coordinates.
virtual b2Vec2 GetAnchorA() const = 0;
/// Get the anchor point on bodyB in world coordinates.
virtual b2Vec2 GetAnchorB() const = 0;
/// Get the reaction force on bodyB at the joint anchor in Newtons.
virtual b2Vec2 GetReactionForce(float32 inv_dt) const = 0;
/// Get the reaction torque on bodyB in N*m.
virtual float32 GetReactionTorque(float32 inv_dt) const = 0;
/// Get the next joint the world joint list.
b2Joint* GetNext();
const b2Joint* GetNext() const;
/// Get the user data pointer.
void* GetUserData() const;
/// Set the user data pointer.
void SetUserData(void* data);
/// Short-cut function to determine if either body is inactive.
bool IsActive() const;
/// Get collide connected.
/// Note: modifying the collide connect flag won't work correctly because
/// the flag is only checked when fixture AABBs begin to overlap.
bool GetCollideConnected() const;
/// Dump this joint to the log file.
virtual void Dump() { b2Log("// Dump is not supported for this joint type.\n"); }
/// Shift the origin for any points stored in world coordinates.
virtual void ShiftOrigin(const b2Vec2& newOrigin) { B2_NOT_USED(newOrigin); }
protected:
friend class b2World;
friend class b2Body;
friend class b2Island;
friend class b2GearJoint;
static b2Joint* Create(const b2JointDef* def, b2BlockAllocator* allocator);
static void Destroy(b2Joint* joint, b2BlockAllocator* allocator);
b2Joint(const b2JointDef* def);
virtual ~b2Joint() {}
virtual void InitVelocityConstraints(const b2SolverData& data) = 0;
virtual void SolveVelocityConstraints(const b2SolverData& data) = 0;
// This returns true if the position errors are within tolerance.
virtual bool SolvePositionConstraints(const b2SolverData& data) = 0;
b2JointType m_type;
b2Joint* m_prev;
b2Joint* m_next;
b2JointEdge m_edgeA;
b2JointEdge m_edgeB;
b2Body* m_bodyA;
b2Body* m_bodyB;
int32 m_index;
bool m_islandFlag;
bool m_collideConnected;
void* m_userData;
};
inline b2JointType b2Joint::GetType() const
{
return m_type;
}
inline b2Body* b2Joint::GetBodyA()
{
return m_bodyA;
}
inline b2Body* b2Joint::GetBodyB()
{
return m_bodyB;
}
inline b2Joint* b2Joint::GetNext()
{
return m_next;
}
inline const b2Joint* b2Joint::GetNext() const
{
return m_next;
}
inline void* b2Joint::GetUserData() const
{
return m_userData;
}
inline void b2Joint::SetUserData(void* data)
{
m_userData = data;
}
inline bool b2Joint::GetCollideConnected() const
{
return m_collideConnected;
}
#endif

View File

@@ -0,0 +1,133 @@
/*
* Copyright (c) 2006-2012 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_MOTOR_JOINT_H
#define B2_MOTOR_JOINT_H
#include <Box2D/Dynamics/Joints/b2Joint.h>
/// Motor joint definition.
struct b2MotorJointDef : public b2JointDef
{
b2MotorJointDef()
{
type = e_motorJoint;
linearOffset.SetZero();
angularOffset = 0.0f;
maxForce = 1.0f;
maxTorque = 1.0f;
correctionFactor = 0.3f;
}
/// Initialize the bodies and offsets using the current transforms.
void Initialize(b2Body* bodyA, b2Body* bodyB);
/// Position of bodyB minus the position of bodyA, in bodyA's frame, in meters.
b2Vec2 linearOffset;
/// The bodyB angle minus bodyA angle in radians.
float32 angularOffset;
/// The maximum motor force in N.
float32 maxForce;
/// The maximum motor torque in N-m.
float32 maxTorque;
/// Position correction factor in the range [0,1].
float32 correctionFactor;
};
/// A motor joint is used to control the relative motion
/// between two bodies. A typical usage is to control the movement
/// of a dynamic body with respect to the ground.
class b2MotorJoint : public b2Joint
{
public:
b2Vec2 GetAnchorA() const;
b2Vec2 GetAnchorB() const;
b2Vec2 GetReactionForce(float32 inv_dt) const;
float32 GetReactionTorque(float32 inv_dt) const;
/// Set/get the target linear offset, in frame A, in meters.
void SetLinearOffset(const b2Vec2& linearOffset);
const b2Vec2& GetLinearOffset() const;
/// Set/get the target angular offset, in radians.
void SetAngularOffset(float32 angularOffset);
float32 GetAngularOffset() const;
/// Set the maximum friction force in N.
void SetMaxForce(float32 force);
/// Get the maximum friction force in N.
float32 GetMaxForce() const;
/// Set the maximum friction torque in N*m.
void SetMaxTorque(float32 torque);
/// Get the maximum friction torque in N*m.
float32 GetMaxTorque() const;
/// Set the position correction factor in the range [0,1].
void SetCorrectionFactor(float32 factor);
/// Get the position correction factor in the range [0,1].
float32 GetCorrectionFactor() const;
/// Dump to b2Log
void Dump();
protected:
friend class b2Joint;
b2MotorJoint(const b2MotorJointDef* def);
void InitVelocityConstraints(const b2SolverData& data);
void SolveVelocityConstraints(const b2SolverData& data);
bool SolvePositionConstraints(const b2SolverData& data);
// Solver shared
b2Vec2 m_linearOffset;
float32 m_angularOffset;
b2Vec2 m_linearImpulse;
float32 m_angularImpulse;
float32 m_maxForce;
float32 m_maxTorque;
float32 m_correctionFactor;
// Solver temp
int32 m_indexA;
int32 m_indexB;
b2Vec2 m_rA;
b2Vec2 m_rB;
b2Vec2 m_localCenterA;
b2Vec2 m_localCenterB;
b2Vec2 m_linearError;
float32 m_angularError;
float32 m_invMassA;
float32 m_invMassB;
float32 m_invIA;
float32 m_invIB;
b2Mat22 m_linearMass;
float32 m_angularMass;
};
#endif

View File

@@ -0,0 +1,129 @@
/*
* Copyright (c) 2006-2007 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_MOUSE_JOINT_H
#define B2_MOUSE_JOINT_H
#include <Box2D/Dynamics/Joints/b2Joint.h>
/// Mouse joint definition. This requires a world target point,
/// tuning parameters, and the time step.
struct b2MouseJointDef : public b2JointDef
{
b2MouseJointDef()
{
type = e_mouseJoint;
target.Set(0.0f, 0.0f);
maxForce = 0.0f;
frequencyHz = 5.0f;
dampingRatio = 0.7f;
}
/// The initial world target point. This is assumed
/// to coincide with the body anchor initially.
b2Vec2 target;
/// The maximum constraint force that can be exerted
/// to move the candidate body. Usually you will express
/// as some multiple of the weight (multiplier * mass * gravity).
float32 maxForce;
/// The response speed.
float32 frequencyHz;
/// The damping ratio. 0 = no damping, 1 = critical damping.
float32 dampingRatio;
};
/// A mouse joint is used to make a point on a body track a
/// specified world point. This a soft constraint with a maximum
/// force. This allows the constraint to stretch and without
/// applying huge forces.
/// NOTE: this joint is not documented in the manual because it was
/// developed to be used in the testbed. If you want to learn how to
/// use the mouse joint, look at the testbed.
class b2MouseJoint : public b2Joint
{
public:
/// Implements b2Joint.
b2Vec2 GetAnchorA() const;
/// Implements b2Joint.
b2Vec2 GetAnchorB() const;
/// Implements b2Joint.
b2Vec2 GetReactionForce(float32 inv_dt) const;
/// Implements b2Joint.
float32 GetReactionTorque(float32 inv_dt) const;
/// Use this to update the target point.
void SetTarget(const b2Vec2& target);
const b2Vec2& GetTarget() const;
/// Set/get the maximum force in Newtons.
void SetMaxForce(float32 force);
float32 GetMaxForce() const;
/// Set/get the frequency in Hertz.
void SetFrequency(float32 hz);
float32 GetFrequency() const;
/// Set/get the damping ratio (dimensionless).
void SetDampingRatio(float32 ratio);
float32 GetDampingRatio() const;
/// The mouse joint does not support dumping.
void Dump() { b2Log("Mouse joint dumping is not supported.\n"); }
/// Implement b2Joint::ShiftOrigin
void ShiftOrigin(const b2Vec2& newOrigin);
protected:
friend class b2Joint;
b2MouseJoint(const b2MouseJointDef* def);
void InitVelocityConstraints(const b2SolverData& data);
void SolveVelocityConstraints(const b2SolverData& data);
bool SolvePositionConstraints(const b2SolverData& data);
b2Vec2 m_localAnchorB;
b2Vec2 m_targetA;
float32 m_frequencyHz;
float32 m_dampingRatio;
float32 m_beta;
// Solver shared
b2Vec2 m_impulse;
float32 m_maxForce;
float32 m_gamma;
// Solver temp
int32 m_indexA;
int32 m_indexB;
b2Vec2 m_rB;
b2Vec2 m_localCenterB;
float32 m_invMassB;
float32 m_invIB;
b2Mat22 m_mass;
b2Vec2 m_C;
};
#endif

View File

@@ -0,0 +1,196 @@
/*
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_PRISMATIC_JOINT_H
#define B2_PRISMATIC_JOINT_H
#include <Box2D/Dynamics/Joints/b2Joint.h>
/// Prismatic joint definition. This requires defining a line of
/// motion using an axis and an anchor point. The definition uses local
/// anchor points and a local axis so that the initial configuration
/// can violate the constraint slightly. The joint translation is zero
/// when the local anchor points coincide in world space. Using local
/// anchors and a local axis helps when saving and loading a game.
struct b2PrismaticJointDef : public b2JointDef
{
b2PrismaticJointDef()
{
type = e_prismaticJoint;
localAnchorA.SetZero();
localAnchorB.SetZero();
localAxisA.Set(1.0f, 0.0f);
referenceAngle = 0.0f;
enableLimit = false;
lowerTranslation = 0.0f;
upperTranslation = 0.0f;
enableMotor = false;
maxMotorForce = 0.0f;
motorSpeed = 0.0f;
}
/// Initialize the bodies, anchors, axis, and reference angle using the world
/// anchor and unit world axis.
void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor, const b2Vec2& axis);
/// The local anchor point relative to bodyA's origin.
b2Vec2 localAnchorA;
/// The local anchor point relative to bodyB's origin.
b2Vec2 localAnchorB;
/// The local translation unit axis in bodyA.
b2Vec2 localAxisA;
/// The constrained angle between the bodies: bodyB_angle - bodyA_angle.
float32 referenceAngle;
/// Enable/disable the joint limit.
bool enableLimit;
/// The lower translation limit, usually in meters.
float32 lowerTranslation;
/// The upper translation limit, usually in meters.
float32 upperTranslation;
/// Enable/disable the joint motor.
bool enableMotor;
/// The maximum motor torque, usually in N-m.
float32 maxMotorForce;
/// The desired motor speed in radians per second.
float32 motorSpeed;
};
/// A prismatic joint. This joint provides one degree of freedom: translation
/// along an axis fixed in bodyA. Relative rotation is prevented. You can
/// use a joint limit to restrict the range of motion and a joint motor to
/// drive the motion or to model joint friction.
class b2PrismaticJoint : public b2Joint
{
public:
b2Vec2 GetAnchorA() const;
b2Vec2 GetAnchorB() const;
b2Vec2 GetReactionForce(float32 inv_dt) const;
float32 GetReactionTorque(float32 inv_dt) const;
/// The local anchor point relative to bodyA's origin.
const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
/// The local anchor point relative to bodyB's origin.
const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
/// The local joint axis relative to bodyA.
const b2Vec2& GetLocalAxisA() const { return m_localXAxisA; }
/// Get the reference angle.
float32 GetReferenceAngle() const { return m_referenceAngle; }
/// Get the current joint translation, usually in meters.
float32 GetJointTranslation() const;
/// Get the current joint translation speed, usually in meters per second.
float32 GetJointSpeed() const;
/// Is the joint limit enabled?
bool IsLimitEnabled() const;
/// Enable/disable the joint limit.
void EnableLimit(bool flag);
/// Get the lower joint limit, usually in meters.
float32 GetLowerLimit() const;
/// Get the upper joint limit, usually in meters.
float32 GetUpperLimit() const;
/// Set the joint limits, usually in meters.
void SetLimits(float32 lower, float32 upper);
/// Is the joint motor enabled?
bool IsMotorEnabled() const;
/// Enable/disable the joint motor.
void EnableMotor(bool flag);
/// Set the motor speed, usually in meters per second.
void SetMotorSpeed(float32 speed);
/// Get the motor speed, usually in meters per second.
float32 GetMotorSpeed() const;
/// Set the maximum motor force, usually in N.
void SetMaxMotorForce(float32 force);
float32 GetMaxMotorForce() const { return m_maxMotorForce; }
/// Get the current motor force given the inverse time step, usually in N.
float32 GetMotorForce(float32 inv_dt) const;
/// Dump to b2Log
void Dump();
protected:
friend class b2Joint;
friend class b2GearJoint;
b2PrismaticJoint(const b2PrismaticJointDef* def);
void InitVelocityConstraints(const b2SolverData& data);
void SolveVelocityConstraints(const b2SolverData& data);
bool SolvePositionConstraints(const b2SolverData& data);
// Solver shared
b2Vec2 m_localAnchorA;
b2Vec2 m_localAnchorB;
b2Vec2 m_localXAxisA;
b2Vec2 m_localYAxisA;
float32 m_referenceAngle;
b2Vec3 m_impulse;
float32 m_motorImpulse;
float32 m_lowerTranslation;
float32 m_upperTranslation;
float32 m_maxMotorForce;
float32 m_motorSpeed;
bool m_enableLimit;
bool m_enableMotor;
b2LimitState m_limitState;
// Solver temp
int32 m_indexA;
int32 m_indexB;
b2Vec2 m_localCenterA;
b2Vec2 m_localCenterB;
float32 m_invMassA;
float32 m_invMassB;
float32 m_invIA;
float32 m_invIB;
b2Vec2 m_axis, m_perp;
float32 m_s1, m_s2;
float32 m_a1, m_a2;
b2Mat33 m_K;
float32 m_motorMass;
};
inline float32 b2PrismaticJoint::GetMotorSpeed() const
{
return m_motorSpeed;
}
#endif

View File

@@ -0,0 +1,152 @@
/*
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_PULLEY_JOINT_H
#define B2_PULLEY_JOINT_H
#include <Box2D/Dynamics/Joints/b2Joint.h>
const float32 b2_minPulleyLength = 2.0f;
/// Pulley joint definition. This requires two ground anchors,
/// two dynamic body anchor points, and a pulley ratio.
struct b2PulleyJointDef : public b2JointDef
{
b2PulleyJointDef()
{
type = e_pulleyJoint;
groundAnchorA.Set(-1.0f, 1.0f);
groundAnchorB.Set(1.0f, 1.0f);
localAnchorA.Set(-1.0f, 0.0f);
localAnchorB.Set(1.0f, 0.0f);
lengthA = 0.0f;
lengthB = 0.0f;
ratio = 1.0f;
collideConnected = true;
}
/// Initialize the bodies, anchors, lengths, max lengths, and ratio using the world anchors.
void Initialize(b2Body* bodyA, b2Body* bodyB,
const b2Vec2& groundAnchorA, const b2Vec2& groundAnchorB,
const b2Vec2& anchorA, const b2Vec2& anchorB,
float32 ratio);
/// The first ground anchor in world coordinates. This point never moves.
b2Vec2 groundAnchorA;
/// The second ground anchor in world coordinates. This point never moves.
b2Vec2 groundAnchorB;
/// The local anchor point relative to bodyA's origin.
b2Vec2 localAnchorA;
/// The local anchor point relative to bodyB's origin.
b2Vec2 localAnchorB;
/// The a reference length for the segment attached to bodyA.
float32 lengthA;
/// The a reference length for the segment attached to bodyB.
float32 lengthB;
/// The pulley ratio, used to simulate a block-and-tackle.
float32 ratio;
};
/// The pulley joint is connected to two bodies and two fixed ground points.
/// The pulley supports a ratio such that:
/// length1 + ratio * length2 <= constant
/// Yes, the force transmitted is scaled by the ratio.
/// Warning: the pulley joint can get a bit squirrelly by itself. They often
/// work better when combined with prismatic joints. You should also cover the
/// the anchor points with static shapes to prevent one side from going to
/// zero length.
class b2PulleyJoint : public b2Joint
{
public:
b2Vec2 GetAnchorA() const;
b2Vec2 GetAnchorB() const;
b2Vec2 GetReactionForce(float32 inv_dt) const;
float32 GetReactionTorque(float32 inv_dt) const;
/// Get the first ground anchor.
b2Vec2 GetGroundAnchorA() const;
/// Get the second ground anchor.
b2Vec2 GetGroundAnchorB() const;
/// Get the current length of the segment attached to bodyA.
float32 GetLengthA() const;
/// Get the current length of the segment attached to bodyB.
float32 GetLengthB() const;
/// Get the pulley ratio.
float32 GetRatio() const;
/// Get the current length of the segment attached to bodyA.
float32 GetCurrentLengthA() const;
/// Get the current length of the segment attached to bodyB.
float32 GetCurrentLengthB() const;
/// Dump joint to dmLog
void Dump();
/// Implement b2Joint::ShiftOrigin
void ShiftOrigin(const b2Vec2& newOrigin);
protected:
friend class b2Joint;
b2PulleyJoint(const b2PulleyJointDef* data);
void InitVelocityConstraints(const b2SolverData& data);
void SolveVelocityConstraints(const b2SolverData& data);
bool SolvePositionConstraints(const b2SolverData& data);
b2Vec2 m_groundAnchorA;
b2Vec2 m_groundAnchorB;
float32 m_lengthA;
float32 m_lengthB;
// Solver shared
b2Vec2 m_localAnchorA;
b2Vec2 m_localAnchorB;
float32 m_constant;
float32 m_ratio;
float32 m_impulse;
// Solver temp
int32 m_indexA;
int32 m_indexB;
b2Vec2 m_uA;
b2Vec2 m_uB;
b2Vec2 m_rA;
b2Vec2 m_rB;
b2Vec2 m_localCenterA;
b2Vec2 m_localCenterB;
float32 m_invMassA;
float32 m_invMassB;
float32 m_invIA;
float32 m_invIB;
float32 m_mass;
};
#endif

View File

@@ -0,0 +1,204 @@
/*
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_REVOLUTE_JOINT_H
#define B2_REVOLUTE_JOINT_H
#include <Box2D/Dynamics/Joints/b2Joint.h>
/// Revolute joint definition. This requires defining an
/// anchor point where the bodies are joined. The definition
/// uses local anchor points so that the initial configuration
/// can violate the constraint slightly. You also need to
/// specify the initial relative angle for joint limits. This
/// helps when saving and loading a game.
/// The local anchor points are measured from the body's origin
/// rather than the center of mass because:
/// 1. you might not know where the center of mass will be.
/// 2. if you add/remove shapes from a body and recompute the mass,
/// the joints will be broken.
struct b2RevoluteJointDef : public b2JointDef
{
b2RevoluteJointDef()
{
type = e_revoluteJoint;
localAnchorA.Set(0.0f, 0.0f);
localAnchorB.Set(0.0f, 0.0f);
referenceAngle = 0.0f;
lowerAngle = 0.0f;
upperAngle = 0.0f;
maxMotorTorque = 0.0f;
motorSpeed = 0.0f;
enableLimit = false;
enableMotor = false;
}
/// Initialize the bodies, anchors, and reference angle using a world
/// anchor point.
void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor);
/// The local anchor point relative to bodyA's origin.
b2Vec2 localAnchorA;
/// The local anchor point relative to bodyB's origin.
b2Vec2 localAnchorB;
/// The bodyB angle minus bodyA angle in the reference state (radians).
float32 referenceAngle;
/// A flag to enable joint limits.
bool enableLimit;
/// The lower angle for the joint limit (radians).
float32 lowerAngle;
/// The upper angle for the joint limit (radians).
float32 upperAngle;
/// A flag to enable the joint motor.
bool enableMotor;
/// The desired motor speed. Usually in radians per second.
float32 motorSpeed;
/// The maximum motor torque used to achieve the desired motor speed.
/// Usually in N-m.
float32 maxMotorTorque;
};
/// A revolute joint constrains two bodies to share a common point while they
/// are free to rotate about the point. The relative rotation about the shared
/// point is the joint angle. You can limit the relative rotation with
/// a joint limit that specifies a lower and upper angle. You can use a motor
/// to drive the relative rotation about the shared point. A maximum motor torque
/// is provided so that infinite forces are not generated.
class b2RevoluteJoint : public b2Joint
{
public:
b2Vec2 GetAnchorA() const;
b2Vec2 GetAnchorB() const;
/// The local anchor point relative to bodyA's origin.
const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
/// The local anchor point relative to bodyB's origin.
const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
/// Get the reference angle.
float32 GetReferenceAngle() const { return m_referenceAngle; }
/// Get the current joint angle in radians.
float32 GetJointAngle() const;
/// Get the current joint angle speed in radians per second.
float32 GetJointSpeed() const;
/// Is the joint limit enabled?
bool IsLimitEnabled() const;
/// Enable/disable the joint limit.
void EnableLimit(bool flag);
/// Get the lower joint limit in radians.
float32 GetLowerLimit() const;
/// Get the upper joint limit in radians.
float32 GetUpperLimit() const;
/// Set the joint limits in radians.
void SetLimits(float32 lower, float32 upper);
/// Is the joint motor enabled?
bool IsMotorEnabled() const;
/// Enable/disable the joint motor.
void EnableMotor(bool flag);
/// Set the motor speed in radians per second.
void SetMotorSpeed(float32 speed);
/// Get the motor speed in radians per second.
float32 GetMotorSpeed() const;
/// Set the maximum motor torque, usually in N-m.
void SetMaxMotorTorque(float32 torque);
float32 GetMaxMotorTorque() const { return m_maxMotorTorque; }
/// Get the reaction force given the inverse time step.
/// Unit is N.
b2Vec2 GetReactionForce(float32 inv_dt) const;
/// Get the reaction torque due to the joint limit given the inverse time step.
/// Unit is N*m.
float32 GetReactionTorque(float32 inv_dt) const;
/// Get the current motor torque given the inverse time step.
/// Unit is N*m.
float32 GetMotorTorque(float32 inv_dt) const;
/// Dump to b2Log.
void Dump();
protected:
friend class b2Joint;
friend class b2GearJoint;
b2RevoluteJoint(const b2RevoluteJointDef* def);
void InitVelocityConstraints(const b2SolverData& data);
void SolveVelocityConstraints(const b2SolverData& data);
bool SolvePositionConstraints(const b2SolverData& data);
// Solver shared
b2Vec2 m_localAnchorA;
b2Vec2 m_localAnchorB;
b2Vec3 m_impulse;
float32 m_motorImpulse;
bool m_enableMotor;
float32 m_maxMotorTorque;
float32 m_motorSpeed;
bool m_enableLimit;
float32 m_referenceAngle;
float32 m_lowerAngle;
float32 m_upperAngle;
// Solver temp
int32 m_indexA;
int32 m_indexB;
b2Vec2 m_rA;
b2Vec2 m_rB;
b2Vec2 m_localCenterA;
b2Vec2 m_localCenterB;
float32 m_invMassA;
float32 m_invMassB;
float32 m_invIA;
float32 m_invIB;
b2Mat33 m_mass; // effective mass for point-to-point constraint.
float32 m_motorMass; // effective mass for motor/limit angular constraint.
b2LimitState m_limitState;
};
inline float32 b2RevoluteJoint::GetMotorSpeed() const
{
return m_motorSpeed;
}
#endif

View File

@@ -0,0 +1,114 @@
/*
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_ROPE_JOINT_H
#define B2_ROPE_JOINT_H
#include <Box2D/Dynamics/Joints/b2Joint.h>
/// Rope joint definition. This requires two body anchor points and
/// a maximum lengths.
/// Note: by default the connected objects will not collide.
/// see collideConnected in b2JointDef.
struct b2RopeJointDef : public b2JointDef
{
b2RopeJointDef()
{
type = e_ropeJoint;
localAnchorA.Set(-1.0f, 0.0f);
localAnchorB.Set(1.0f, 0.0f);
maxLength = 0.0f;
}
/// The local anchor point relative to bodyA's origin.
b2Vec2 localAnchorA;
/// The local anchor point relative to bodyB's origin.
b2Vec2 localAnchorB;
/// The maximum length of the rope.
/// Warning: this must be larger than b2_linearSlop or
/// the joint will have no effect.
float32 maxLength;
};
/// A rope joint enforces a maximum distance between two points
/// on two bodies. It has no other effect.
/// Warning: if you attempt to change the maximum length during
/// the simulation you will get some non-physical behavior.
/// A model that would allow you to dynamically modify the length
/// would have some sponginess, so I chose not to implement it
/// that way. See b2DistanceJoint if you want to dynamically
/// control length.
class b2RopeJoint : public b2Joint
{
public:
b2Vec2 GetAnchorA() const;
b2Vec2 GetAnchorB() const;
b2Vec2 GetReactionForce(float32 inv_dt) const;
float32 GetReactionTorque(float32 inv_dt) const;
/// The local anchor point relative to bodyA's origin.
const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
/// The local anchor point relative to bodyB's origin.
const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
/// Set/Get the maximum length of the rope.
void SetMaxLength(float32 length) { m_maxLength = length; }
float32 GetMaxLength() const;
b2LimitState GetLimitState() const;
/// Dump joint to dmLog
void Dump();
protected:
friend class b2Joint;
b2RopeJoint(const b2RopeJointDef* data);
void InitVelocityConstraints(const b2SolverData& data);
void SolveVelocityConstraints(const b2SolverData& data);
bool SolvePositionConstraints(const b2SolverData& data);
// Solver shared
b2Vec2 m_localAnchorA;
b2Vec2 m_localAnchorB;
float32 m_maxLength;
float32 m_length;
float32 m_impulse;
// Solver temp
int32 m_indexA;
int32 m_indexB;
b2Vec2 m_u;
b2Vec2 m_rA;
b2Vec2 m_rB;
b2Vec2 m_localCenterA;
b2Vec2 m_localCenterB;
float32 m_invMassA;
float32 m_invMassB;
float32 m_invIA;
float32 m_invIB;
float32 m_mass;
b2LimitState m_state;
};
#endif

View File

@@ -0,0 +1,126 @@
/*
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_WELD_JOINT_H
#define B2_WELD_JOINT_H
#include <Box2D/Dynamics/Joints/b2Joint.h>
/// Weld joint definition. You need to specify local anchor points
/// where they are attached and the relative body angle. The position
/// of the anchor points is important for computing the reaction torque.
struct b2WeldJointDef : public b2JointDef
{
b2WeldJointDef()
{
type = e_weldJoint;
localAnchorA.Set(0.0f, 0.0f);
localAnchorB.Set(0.0f, 0.0f);
referenceAngle = 0.0f;
frequencyHz = 0.0f;
dampingRatio = 0.0f;
}
/// Initialize the bodies, anchors, and reference angle using a world
/// anchor point.
void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor);
/// The local anchor point relative to bodyA's origin.
b2Vec2 localAnchorA;
/// The local anchor point relative to bodyB's origin.
b2Vec2 localAnchorB;
/// The bodyB angle minus bodyA angle in the reference state (radians).
float32 referenceAngle;
/// The mass-spring-damper frequency in Hertz. Rotation only.
/// Disable softness with a value of 0.
float32 frequencyHz;
/// The damping ratio. 0 = no damping, 1 = critical damping.
float32 dampingRatio;
};
/// A weld joint essentially glues two bodies together. A weld joint may
/// distort somewhat because the island constraint solver is approximate.
class b2WeldJoint : public b2Joint
{
public:
b2Vec2 GetAnchorA() const;
b2Vec2 GetAnchorB() const;
b2Vec2 GetReactionForce(float32 inv_dt) const;
float32 GetReactionTorque(float32 inv_dt) const;
/// The local anchor point relative to bodyA's origin.
const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
/// The local anchor point relative to bodyB's origin.
const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
/// Get the reference angle.
float32 GetReferenceAngle() const { return m_referenceAngle; }
/// Set/get frequency in Hz.
void SetFrequency(float32 hz) { m_frequencyHz = hz; }
float32 GetFrequency() const { return m_frequencyHz; }
/// Set/get damping ratio.
void SetDampingRatio(float32 ratio) { m_dampingRatio = ratio; }
float32 GetDampingRatio() const { return m_dampingRatio; }
/// Dump to b2Log
void Dump();
protected:
friend class b2Joint;
b2WeldJoint(const b2WeldJointDef* def);
void InitVelocityConstraints(const b2SolverData& data);
void SolveVelocityConstraints(const b2SolverData& data);
bool SolvePositionConstraints(const b2SolverData& data);
float32 m_frequencyHz;
float32 m_dampingRatio;
float32 m_bias;
// Solver shared
b2Vec2 m_localAnchorA;
b2Vec2 m_localAnchorB;
float32 m_referenceAngle;
float32 m_gamma;
b2Vec3 m_impulse;
// Solver temp
int32 m_indexA;
int32 m_indexB;
b2Vec2 m_rA;
b2Vec2 m_rB;
b2Vec2 m_localCenterA;
b2Vec2 m_localCenterB;
float32 m_invMassA;
float32 m_invMassB;
float32 m_invIA;
float32 m_invIB;
b2Mat33 m_mass;
};
#endif

View File

@@ -0,0 +1,216 @@
/*
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_WHEEL_JOINT_H
#define B2_WHEEL_JOINT_H
#include <Box2D/Dynamics/Joints/b2Joint.h>
/// Wheel joint definition. This requires defining a line of
/// motion using an axis and an anchor point. The definition uses local
/// anchor points and a local axis so that the initial configuration
/// can violate the constraint slightly. The joint translation is zero
/// when the local anchor points coincide in world space. Using local
/// anchors and a local axis helps when saving and loading a game.
struct b2WheelJointDef : public b2JointDef
{
b2WheelJointDef()
{
type = e_wheelJoint;
localAnchorA.SetZero();
localAnchorB.SetZero();
localAxisA.Set(1.0f, 0.0f);
enableMotor = false;
maxMotorTorque = 0.0f;
motorSpeed = 0.0f;
frequencyHz = 2.0f;
dampingRatio = 0.7f;
}
/// Initialize the bodies, anchors, axis, and reference angle using the world
/// anchor and world axis.
void Initialize(b2Body* bodyA, b2Body* bodyB, const b2Vec2& anchor, const b2Vec2& axis);
/// The local anchor point relative to bodyA's origin.
b2Vec2 localAnchorA;
/// The local anchor point relative to bodyB's origin.
b2Vec2 localAnchorB;
/// The local translation axis in bodyA.
b2Vec2 localAxisA;
/// Enable/disable the joint motor.
bool enableMotor;
/// The maximum motor torque, usually in N-m.
float32 maxMotorTorque;
/// The desired motor speed in radians per second.
float32 motorSpeed;
/// Suspension frequency, zero indicates no suspension
float32 frequencyHz;
/// Suspension damping ratio, one indicates critical damping
float32 dampingRatio;
};
/// A wheel joint. This joint provides two degrees of freedom: translation
/// along an axis fixed in bodyA and rotation in the plane. In other words, it is a point to
/// line constraint with a rotational motor and a linear spring/damper.
/// This joint is designed for vehicle suspensions.
class b2WheelJoint : public b2Joint
{
public:
b2Vec2 GetAnchorA() const;
b2Vec2 GetAnchorB() const;
b2Vec2 GetReactionForce(float32 inv_dt) const;
float32 GetReactionTorque(float32 inv_dt) const;
/// The local anchor point relative to bodyA's origin.
const b2Vec2& GetLocalAnchorA() const { return m_localAnchorA; }
/// The local anchor point relative to bodyB's origin.
const b2Vec2& GetLocalAnchorB() const { return m_localAnchorB; }
/// The local joint axis relative to bodyA.
const b2Vec2& GetLocalAxisA() const { return m_localXAxisA; }
/// Get the current joint translation, usually in meters.
float32 GetJointTranslation() const;
/// Get the current joint linear speed, usually in meters per second.
float32 GetJointLinearSpeed() const;
/// Get the current joint angle in radians.
float32 GetJointAngle() const;
/// Get the current joint angular speed in radians per second.
float32 GetJointAngularSpeed() const;
/// Is the joint motor enabled?
bool IsMotorEnabled() const;
/// Enable/disable the joint motor.
void EnableMotor(bool flag);
/// Set the motor speed, usually in radians per second.
void SetMotorSpeed(float32 speed);
/// Get the motor speed, usually in radians per second.
float32 GetMotorSpeed() const;
/// Set/Get the maximum motor force, usually in N-m.
void SetMaxMotorTorque(float32 torque);
float32 GetMaxMotorTorque() const;
/// Get the current motor torque given the inverse time step, usually in N-m.
float32 GetMotorTorque(float32 inv_dt) const;
/// Set/Get the spring frequency in hertz. Setting the frequency to zero disables the spring.
void SetSpringFrequencyHz(float32 hz);
float32 GetSpringFrequencyHz() const;
/// Set/Get the spring damping ratio
void SetSpringDampingRatio(float32 ratio);
float32 GetSpringDampingRatio() const;
/// Dump to b2Log
void Dump();
protected:
friend class b2Joint;
b2WheelJoint(const b2WheelJointDef* def);
void InitVelocityConstraints(const b2SolverData& data);
void SolveVelocityConstraints(const b2SolverData& data);
bool SolvePositionConstraints(const b2SolverData& data);
float32 m_frequencyHz;
float32 m_dampingRatio;
// Solver shared
b2Vec2 m_localAnchorA;
b2Vec2 m_localAnchorB;
b2Vec2 m_localXAxisA;
b2Vec2 m_localYAxisA;
float32 m_impulse;
float32 m_motorImpulse;
float32 m_springImpulse;
float32 m_maxMotorTorque;
float32 m_motorSpeed;
bool m_enableMotor;
// Solver temp
int32 m_indexA;
int32 m_indexB;
b2Vec2 m_localCenterA;
b2Vec2 m_localCenterB;
float32 m_invMassA;
float32 m_invMassB;
float32 m_invIA;
float32 m_invIB;
b2Vec2 m_ax, m_ay;
float32 m_sAx, m_sBx;
float32 m_sAy, m_sBy;
float32 m_mass;
float32 m_motorMass;
float32 m_springMass;
float32 m_bias;
float32 m_gamma;
};
inline float32 b2WheelJoint::GetMotorSpeed() const
{
return m_motorSpeed;
}
inline float32 b2WheelJoint::GetMaxMotorTorque() const
{
return m_maxMotorTorque;
}
inline void b2WheelJoint::SetSpringFrequencyHz(float32 hz)
{
m_frequencyHz = hz;
}
inline float32 b2WheelJoint::GetSpringFrequencyHz() const
{
return m_frequencyHz;
}
inline void b2WheelJoint::SetSpringDampingRatio(float32 ratio)
{
m_dampingRatio = ratio;
}
inline float32 b2WheelJoint::GetSpringDampingRatio() const
{
return m_dampingRatio;
}
#endif