170 lines
5.0 KiB
C++
170 lines
5.0 KiB
C++
/*=============================================================================*/
|
|
// Copyright 2021-2022 Elite Engine
|
|
// Authors: Matthieu Delaere
|
|
/*=============================================================================*/
|
|
// EVector2.h: Vector3D struct
|
|
/*=============================================================================*/
|
|
#ifndef ELITE_MATH_VECTOR3
|
|
#define ELITE_MATH_VECTOR3
|
|
namespace Elite {
|
|
|
|
#define ZeroVector3 Vector3()
|
|
#define UnitVector3 Vector3(1.f,1.f,1.f)
|
|
|
|
//Vector 3D
|
|
struct Vector3
|
|
{
|
|
//=== Datamembers ===
|
|
float x = 0.0f;
|
|
float y = 0.0f;
|
|
float z = 0.0f;
|
|
|
|
//=== Constructors ===
|
|
Vector3(){};
|
|
Vector3(float _x, float _y, float _z):x(_x), y(_y), z(_z) {};
|
|
explicit Vector3(const Vector2 v, float _z = 0.f):x(v.x), y(v.y), z(_z) {};
|
|
//Vector3(const Vector3& other); //Copy Constructor
|
|
//Vector3& operator=(const Vector3& other); //Copy Assignment Operator
|
|
|
|
//=== Vector Conversions Functions ===
|
|
#ifdef USE_BOX2D
|
|
explicit Vector3(const b2Vec3& v) : x(v.x), y(v.y), z(v.z) {};
|
|
Vector3& operator=(const b2Vec3& v) { x = v.x; y = v.y; z = v.z; return *this; }
|
|
explicit operator b2Vec3() const
|
|
{ return b2Vec3(x, y, z); };
|
|
#endif
|
|
|
|
//=== Arithmetic Operators ===
|
|
inline auto operator+(const Vector3& v) const
|
|
{ return Vector3(x + v.x, y + v.y, z + v.z); }
|
|
inline auto operator-(const Vector3& v) const
|
|
{ return Vector3(x - v.x, y - v.y, z - v.z); }
|
|
inline auto operator*(float scale) const
|
|
{ return Vector3(x * scale, y * scale, z * scale); }
|
|
inline auto operator/(float scale) const
|
|
{
|
|
const auto revScale = 1.0f / scale;
|
|
return Vector3(x * revScale, y * revScale, z * revScale);
|
|
}
|
|
|
|
//=== Compound Assignment Operators === //auto& for type deduction
|
|
inline auto& operator+=(const Vector3& v)
|
|
{ x += v.x; y += v.y; z += v.z; return *this; }
|
|
inline auto& operator-=(const Vector3& v)
|
|
{ x -= v.x; y -= v.y; z -= v.z; return *this; }
|
|
inline auto& operator*=(float scale)
|
|
{ x *= scale; y *= scale; z *= scale; return *this; }
|
|
inline auto& operator/=(float scale)
|
|
{
|
|
const auto revScale = 1.0f / scale;
|
|
x *= revScale; y *= revScale; z *= revScale; return *this;
|
|
}
|
|
|
|
//=== Relational Operators ===
|
|
inline auto operator==(const Vector3& v) const /*Check if both components are equal*/
|
|
{ return AreEqual(x, v.x) && AreEqual(y, v.y) && AreEqual(z, v.z); }
|
|
inline auto operator!=(const Vector3& v) const /*Check if one or both components are NOT equal*/
|
|
{ return !(*this == v); }
|
|
|
|
//=== Member Access Operators ===
|
|
inline float operator[](unsigned int i) const
|
|
{ return ((i == 0) ? x : y); }
|
|
inline float& operator[](unsigned int i)
|
|
{ return ((i == 0) ? x : y); }
|
|
|
|
//=== Internal Vector Functions ===
|
|
inline auto Dot(const Vector3& v) const
|
|
{ return x * v.x + y * v.y + z * v.z; }
|
|
|
|
inline auto Cross(const Vector3& v) const
|
|
{
|
|
return Vector3(
|
|
y * v.z - z * v.y,
|
|
z * v.x - x * v.z,
|
|
x * v.y - y * v.x);
|
|
}
|
|
|
|
inline auto GetAbs() const
|
|
{ return Vector3(abs(x), abs(y), abs(z)); }
|
|
|
|
inline auto SqrtMagnitude() const
|
|
{ return x*x + y*y + z*z; }
|
|
|
|
inline auto Magnitude() const
|
|
{ return sqrtf(SqrtMagnitude()); }
|
|
|
|
inline void Normalize()
|
|
{
|
|
auto m = Magnitude();
|
|
if (AreEqual(m, 0.f))
|
|
{
|
|
*this = ZeroVector3;
|
|
return;
|
|
}
|
|
|
|
auto invM = 1.f / m;
|
|
x *= invM;
|
|
y *= invM;
|
|
z *= invM;
|
|
}
|
|
|
|
inline Vector3 GetNormalized() const /*! Returns a normalized copy of this vector. This vector does not change.*/
|
|
{
|
|
auto v = Vector3(*this);
|
|
v.Normalize();
|
|
return v;
|
|
}
|
|
|
|
inline auto DistanceSquared(const Vector3& v) const
|
|
{ return Square(v.x - x) + Square(v.y - y) + Square(v.z - z); }
|
|
|
|
inline auto Distance(const Vector3& v) const
|
|
{ return sqrtf(DistanceSquared(v)); }
|
|
|
|
inline auto Project(const Vector3& v) const
|
|
{ return v * ((*this).Dot(v) / v.Dot(v)); }
|
|
|
|
inline auto Reject(const Vector3& v) const
|
|
{ return *this - (*this).Project(v);}
|
|
};
|
|
|
|
//=== Global Vector Operators ===
|
|
#pragma region GlobalVectorOperators
|
|
inline auto operator * (float s, const Vector3& v)
|
|
{ return Vector3(s * v.x, s * v.y, s * v.z); }
|
|
#pragma endregion //GlobalVectorOperators
|
|
|
|
//=== Global Vector Functions ===
|
|
#pragma region GlobalVectorFunctions
|
|
inline auto Dot(const Vector3& v1, const Vector3& v2)
|
|
{ return v1.Dot(v2); }
|
|
|
|
inline auto Cross(const Vector3& v1, const Vector3& v2)
|
|
{ return v1.Cross(v2); }
|
|
|
|
inline auto GetAbs(const Vector3& v)
|
|
{ return v.GetAbs(); }
|
|
|
|
inline void Abs(Vector3& v) /*! Make absolute Vector3 of this Vector3 */
|
|
{ v = v.GetAbs(); }
|
|
|
|
inline void Normalize(Vector3& v)
|
|
{ v.Normalize(); }
|
|
|
|
inline auto GetNormalized(Vector3& v)
|
|
{ return v.GetNormalized(); }
|
|
|
|
inline auto DistanceSquared(const Vector3& v1, const Vector3& v2)
|
|
{ return v1.DistanceSquared(v2); }
|
|
|
|
inline auto Distance(const Vector3& v1, const Vector3& v2)
|
|
{ return v1.Distance(v2); }
|
|
|
|
inline auto Project(const Vector3& v1, const Vector3& v2)
|
|
{ return v1.Project(v2); }
|
|
|
|
inline auto Reject(const Vector3& v1, const Vector3& v2)
|
|
{ return v1.Reject(v2); }
|
|
#pragma endregion //GlobalVectorFunctions
|
|
}
|
|
#endif |