193 lines
5.8 KiB
C++
193 lines
5.8 KiB
C++
#include "stdafx.h"
|
|
#include "Thinker.h"
|
|
#include <algorithm>
|
|
|
|
std::vector<Thinker::ItemMemory>::iterator Thinker::FindLeastValueItem(const eItemType& itemType) {
|
|
auto minIt = m_ItemMemory.end();
|
|
|
|
for (auto it = m_ItemMemory.begin(); it != m_ItemMemory.end(); ++it) {
|
|
if (it->ItemInfo.Type != itemType)
|
|
continue;
|
|
|
|
if (minIt == m_ItemMemory.end() || it->ItemInfo.Value < minIt->ItemInfo.Value) {
|
|
minIt = it;
|
|
}
|
|
}
|
|
|
|
return minIt;
|
|
}
|
|
|
|
bool Thinker::IsInvNotFull() const {
|
|
return m_ItemMemory.capacity() < m_MaxStorageSlots;
|
|
}
|
|
|
|
bool Thinker::IsItemInInv(const eItemType& itemType) {
|
|
return std::any_of(std::begin(m_ItemMemory), std::end(m_ItemMemory),
|
|
[itemType](const ItemMemory& memory)->bool { return memory.ItemInfo.Type == itemType && memory.ItemInfo.Value > 0; });
|
|
}
|
|
|
|
bool Thinker::EmptyValue() {
|
|
return std::any_of(std::begin(m_ItemMemory), std::end(m_ItemMemory),
|
|
[](const ItemMemory& memory)->bool { return memory.ItemInfo.Value <= 0; });
|
|
}
|
|
|
|
|
|
int Thinker::FindEmptyValue(const ItemInfo& item) {
|
|
const auto foundItem = std::find_if(std::begin(m_ItemMemory), std::end(m_ItemMemory),
|
|
[item](const ItemMemory& memory)->bool { return memory.ItemInfo.Type == item.Type; });
|
|
if (foundItem != std::end(m_ItemMemory)) {
|
|
return foundItem->invIndex;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
int Thinker::AddItemToMemory(const ItemInfo& item) {
|
|
if (m_ItemMemory.capacity() >= m_MaxStorageSlots)
|
|
return -1;
|
|
ItemMemory newItem{};
|
|
newItem.ItemInfo = item;
|
|
newItem.invIndex = static_cast<int>(m_ItemMemory.size());
|
|
m_ItemMemory.push_back(newItem);
|
|
return newItem.invIndex;
|
|
}
|
|
|
|
int Thinker::CheckItem(const ItemInfo& item) {
|
|
if (std::ranges::any_of(m_ItemMemory,
|
|
[item](const ItemMemory& memory)->bool { return memory.ItemInfo.Type == item.Type; })) {
|
|
const auto minItem{ FindLeastValueItem(item.Type) };
|
|
|
|
if (minItem->ItemInfo.Value <= item.Value) {
|
|
minItem->ItemInfo = item;
|
|
return minItem->invIndex;
|
|
}
|
|
else {
|
|
return m_MaxStorageSlots - 1;
|
|
}
|
|
}
|
|
else {
|
|
std::ranges::sort(m_ItemMemory,
|
|
[](const ItemMemory& lhs, const ItemMemory& rhs)->bool { return lhs.ItemInfo.Type < rhs.ItemInfo.Type; });
|
|
|
|
const auto duplicate =
|
|
std::ranges::adjacent_find(m_ItemMemory,
|
|
[](const ItemMemory& lhs, const ItemMemory& rhs)->bool { return lhs.ItemInfo.Type == rhs.ItemInfo.Type; });
|
|
|
|
const auto minItem =
|
|
std::min_element(duplicate, duplicate + 1,
|
|
[](const ItemMemory& lhs, const ItemMemory& rhs)->bool { return lhs.ItemInfo.Value < rhs.ItemInfo.Value; });
|
|
|
|
minItem->ItemInfo = item;
|
|
return minItem->invIndex;
|
|
}
|
|
}
|
|
|
|
bool Thinker::CheckIfTargetIsInside(const HouseInfo& targetHouse, Elite::Vector2 playerPos) {
|
|
const float houseOffset{ 5.f };
|
|
const Elite::Vector2 houseCenter{ targetHouse.Center };
|
|
return (playerPos.x >= houseCenter.x - houseOffset && playerPos.x <= houseCenter.x + houseOffset &&
|
|
playerPos.y >= houseCenter.y - houseOffset && playerPos.y <= houseCenter.y + houseOffset);
|
|
}
|
|
|
|
bool Thinker::CheckIfTargetIsExplored(Elite::Vector2 target, float offset) const {
|
|
return std::any_of(std::begin(m_HousesMemory), std::end(m_HousesMemory),
|
|
[target, offset](const HouseMemory& memory)->bool {
|
|
return memory.info.Center.x >= target.x - offset && memory.info.Center.x <= target.x + offset &&
|
|
memory.info.Center.y >= target.y - offset && memory.info.Center.y <= target.y + offset;
|
|
});
|
|
}
|
|
|
|
|
|
bool Thinker::NewHouseToExplore() {
|
|
if (m_HousesMemory.capacity() != 0) {
|
|
if (std::ranges::any_of(m_HousesMemory,
|
|
[](const HouseMemory& houseMemory)->bool { return houseMemory.newHouse == true; })) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Thinker::HouseToReExplore() {
|
|
if (m_HousesMemory.capacity() != 0) {
|
|
const std::chrono::steady_clock::time_point currentTime{ std::chrono::steady_clock::now() };
|
|
|
|
if (std::ranges::any_of(m_HousesMemory,
|
|
[=](const HouseMemory& houseMemory)->bool {
|
|
const std::chrono::duration<float> elapsedSec{ currentTime - houseMemory.lastSaw };
|
|
return elapsedSec.count() >= m_MaxWaitTimer;
|
|
})) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Thinker::SetTargetHouseExpireDate(const HouseInfo& targetHouse) {
|
|
assert(m_HousesMemory.capacity() != 0);
|
|
|
|
const auto foundHouse = FindHouseInMemory(targetHouse);
|
|
|
|
foundHouse->lastSaw = std::chrono::steady_clock::now();
|
|
foundHouse->newHouse = false;
|
|
}
|
|
|
|
HouseInfo Thinker::CheckHouseValidTarget(Elite::Vector2 playerPos, float maxRadius) const {
|
|
HouseInfo targetHouse{};
|
|
float closestHouse{ FLT_MAX };
|
|
|
|
for (auto house : m_HousesMemory) {
|
|
const float houseDistance{ house.info.Center.DistanceSquared(playerPos) };
|
|
|
|
if (houseDistance > maxRadius * maxRadius)
|
|
continue;
|
|
|
|
if (closestHouse < houseDistance)
|
|
continue;
|
|
|
|
if (house.newHouse == true) {
|
|
targetHouse = house.info;
|
|
closestHouse = houseDistance;
|
|
}
|
|
else {
|
|
const std::chrono::steady_clock::time_point currentTime{ std::chrono::steady_clock::now() };
|
|
const std::chrono::duration<float> elapsedSec{ currentTime - house.lastSaw };
|
|
|
|
if (elapsedSec.count() < m_MaxWaitTimer)
|
|
continue;
|
|
|
|
targetHouse = house.info;
|
|
closestHouse = houseDistance;
|
|
}
|
|
}
|
|
|
|
return targetHouse;
|
|
}
|
|
|
|
bool Thinker::CheckHousesForMemory(const std::vector<HouseInfo>& FOVHouses) {
|
|
bool result{};
|
|
|
|
for (auto& newHouse : FOVHouses) {
|
|
if (m_HousesMemory.capacity() != 0) {
|
|
if (std::ranges::any_of(m_HousesMemory,
|
|
[newHouse](const HouseMemory& houseMemory)->bool { return houseMemory.info.Center == newHouse.Center; })) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
HouseMemory houseToMemory{};
|
|
houseToMemory.info = newHouse;
|
|
|
|
m_HousesMemory.push_back(houseToMemory);
|
|
|
|
result = true;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
std::vector<Thinker::HouseMemory>::iterator Thinker::FindHouseInMemory(const HouseInfo& targetHouse) {
|
|
return
|
|
std::ranges::find_if(m_HousesMemory,
|
|
[targetHouse](const HouseMemory& houseMemory)->bool { return houseMemory.info.Center == targetHouse.Center; });
|
|
}
|