Files
dae16-VerhulstBram-GameProject/Engine/utils.cpp
Bram Verhulst d6bb3add26 Added the Grid, Camera, Level system
Basic player
Started (Barely) on the TextureManager
And other fixes
2024-03-11 03:29:44 +01:00

695 lines
18 KiB
C++

#include "base.h"
//#define _USE_MATH_DEFINES
#include <cmath>
#include <algorithm>
#include <iostream>
#include "utils.h"
#pragma region OpenGLDrawFunctionality
void utils::SetColor( const Color4f& color )
{
glColor4f( color.r, color.g, color.b, color.a );
}
void utils::ClearBackground( const Color4f& color ) {
glClearColor(color.r, color.g, color.b, color.a);
glClear(GL_COLOR_BUFFER_BIT);
}
void utils::DrawPoint( float x, float y, float pointSize )
{
glPointSize( pointSize );
glBegin( GL_POINTS );
{
glVertex2f( x, y );
}
glEnd( );
}
void utils::DrawPoint( const Point2f& p, float pointSize )
{
DrawPoint( p.x, p.y, pointSize );
}
void utils::DrawPoints( Point2f *pVertices, int nrVertices, float pointSize )
{
glPointSize( pointSize );
glBegin( GL_POINTS );
{
for ( int idx{ 0 }; idx < nrVertices; ++idx )
{
glVertex2f( pVertices[idx].x, pVertices[idx].y );
}
}
glEnd( );
}
void utils::DrawLine( float x1, float y1, float x2, float y2, float lineWidth )
{
glLineWidth( lineWidth );
glBegin( GL_LINES );
{
glVertex2f( x1, y1 );
glVertex2f( x2, y2 );
}
glEnd( );
}
void utils::DrawLine( const Point2f& p1, const Point2f& p2, float lineWidth )
{
DrawLine( p1.x, p1.y, p2.x, p2.y, lineWidth );
}
void utils::DrawTriangle(const Point2f& p1, const Point2f& p2, const Point2f& p3, float lineWidth)
{
glLineWidth(lineWidth);
glBegin(GL_LINE_LOOP);
{
glVertex2f(p1.x, p1.y);
glVertex2f(p2.x, p2.y);
glVertex2f(p3.x, p3.y);
}
glEnd();
}
void utils::FillTriangle(const Point2f& p1, const Point2f& p2, const Point2f& p3)
{
glBegin(GL_TRIANGLES);
{
glVertex2f(p1.x, p1.y);
glVertex2f(p2.x, p2.y);
glVertex2f(p3.x, p3.y);
}
glEnd();
}
void utils::DrawRect( float left, float bottom, float width, float height, float lineWidth )
{
if (width > 0 && height > 0 && lineWidth > 0)
{
glLineWidth(lineWidth);
glBegin(GL_LINE_LOOP);
{
glVertex2f(left, bottom);
glVertex2f(left + width, bottom);
glVertex2f(left + width, bottom + height);
glVertex2f(left, bottom + height);
}
glEnd();
}
}
void utils::DrawRect( const Point2f& bottomLeft, float width, float height, float lineWidth )
{
DrawRect( bottomLeft.x, bottomLeft.y, width, height, lineWidth );
}
void utils::DrawRect( const Rectf& rect, float lineWidth )
{
DrawRect( rect.left, rect.bottom, rect.width, rect.height, lineWidth );
}
void utils::FillRect( float left, float bottom, float width, float height )
{
if (width > 0 && height > 0)
{
glBegin(GL_POLYGON);
{
glVertex2f(left, bottom);
glVertex2f(left + width, bottom);
glVertex2f(left + width, bottom + height);
glVertex2f(left, bottom + height);
}
glEnd();
}
}
void utils::FillRect( const Point2f& bottomLeft, float width, float height )
{
FillRect( bottomLeft.x, bottomLeft.y, width, height );
}
void utils::FillRect( const Rectf& rect )
{
FillRect( rect.left, rect.bottom, rect.width, rect.height );
}
void utils::DrawEllipse( float centerX, float centerY, float radX, float radY, float lineWidth )
{
if (radX > 0 && radY > 0 && lineWidth > 0)
{
float dAngle{ radX > radY ? float(g_Pi / radX) : float(g_Pi / radY) };
glLineWidth(lineWidth);
glBegin(GL_LINE_LOOP);
{
for (float angle = 0.0; angle < float(2 * g_Pi); angle += dAngle)
{
glVertex2f(centerX + radX * cos(angle), centerY + radY * sin(angle));
}
}
glEnd();
}
}
void utils::DrawEllipse( const Point2f& center, float radX, float radY, float lineWidth )
{
DrawEllipse( center.x, center.y, radX, radY, lineWidth );
}
void utils::DrawEllipse( const Ellipsef& ellipse, float lineWidth )
{
DrawEllipse( ellipse.center.x, ellipse.center.y, ellipse.radiusX, ellipse.radiusY, lineWidth );
}
void utils::FillEllipse( float centerX, float centerY, float radX, float radY )
{
if (radX > 0 && radY > 0)
{
float dAngle{ radX > radY ? float(g_Pi / radX) : float(g_Pi / radY) };
glBegin(GL_POLYGON);
{
for (float angle = 0.0; angle < float(2 * g_Pi); angle += dAngle)
{
glVertex2f(centerX + radX * cos(angle), centerY + radY * sin(angle));
}
}
glEnd();
}
}
void utils::FillEllipse( const Ellipsef& ellipse )
{
FillEllipse( ellipse.center.x, ellipse.center.y, ellipse.radiusX, ellipse.radiusY );
}
void utils::FillEllipse( const Point2f& center, float radX, float radY )
{
FillEllipse( center.x, center.y, radX, radY );
}
void utils::DrawArc( float centerX, float centerY, float radX, float radY, float fromAngle, float tillAngle, float lineWidth )
{
if ( fromAngle > tillAngle )
{
return;
}
float dAngle{ radX > radY ? float( g_Pi / radX ) : float( g_Pi / radY ) };
glLineWidth( lineWidth );
glBegin( GL_LINE_STRIP );
{
for ( float angle = fromAngle; angle < tillAngle; angle += dAngle )
{
glVertex2f( centerX + radX * cos( angle ), centerY + radY * sin( angle ) );
}
glVertex2f( centerX + radX * cos( tillAngle ), centerY + radY * sin( tillAngle ) );
}
glEnd( );
}
void utils::DrawArc( const Point2f& center, float radX, float radY, float fromAngle, float tillAngle, float lineWidth )
{
DrawArc( center.x, center.y, radX, radY, fromAngle, tillAngle, lineWidth );
}
void utils::FillArc( float centerX, float centerY, float radX, float radY, float fromAngle, float tillAngle )
{
if ( fromAngle > tillAngle )
{
return;
}
float dAngle{ radX > radY ? float( g_Pi / radX ) : float( g_Pi / radY ) };
glBegin( GL_POLYGON );
{
glVertex2f( centerX, centerY );
for ( float angle = fromAngle; angle < tillAngle; angle += dAngle )
{
glVertex2f( centerX + radX * cos( angle ), centerY + radY * sin( angle ) );
}
glVertex2f( centerX + radX * cos( tillAngle ), centerY + radY * sin( tillAngle ) );
}
glEnd( );
}
void utils::FillArc( const Point2f& center, float radX, float radY, float fromAngle, float tillAngle )
{
FillArc( center.x, center.y, radX, radY, fromAngle, tillAngle );
}
void utils::DrawPolygon( const std::vector<Point2f>& vertices, bool closed, float lineWidth )
{
DrawPolygon( vertices.data( ), vertices.size( ), closed, lineWidth );
}
void utils::DrawPolygon( const Point2f* pVertices, size_t nrVertices, bool closed, float lineWidth )
{
glLineWidth( lineWidth );
closed ? glBegin( GL_LINE_LOOP ) : glBegin( GL_LINE_STRIP );
{
for ( size_t idx{ 0 }; idx < nrVertices; ++idx )
{
glVertex2f( pVertices[idx].x, pVertices[idx].y );
}
}
glEnd( );
}
void utils::FillPolygon( const std::vector<Point2f>& vertices )
{
FillPolygon( vertices.data( ), vertices.size( ) );
}
void utils::FillPolygon( const Point2f *pVertices, size_t nrVertices )
{
glBegin( GL_POLYGON );
{
for ( size_t idx{ 0 }; idx < nrVertices; ++idx )
{
glVertex2f( pVertices[idx].x, pVertices[idx].y );
}
}
glEnd( );
}
#pragma endregion OpenGLDrawFunctionality
#pragma region CollisionFunctionality
float utils::GetDistance(float x1, float y1, float x2, float y2)
{
return (sqrtf((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)));
}
float utils::GetDistance(const Point2f& p1, const Point2f& p2)
{
return GetDistance(p1.x, p1.y, p2.x, p2.y);
}
bool utils::IsPointInRect( const Point2f& p, const Rectf& r )
{
return ( p.x >= r.left &&
p.x <= r.left + r.width &&
p.y >= r.bottom &&
p.y <= r.bottom + r.height );
}
bool utils::IsPointInCircle( const Point2f& p, const Circlef& c )
{
float squaredDist{ (p.x - c.center.x) * (p.x - c.center.x) + (p.y - c.center.y) * (p.y - c.center.y) };
float squaredRadius{ c.radius * c.radius };
return ( squaredRadius >= squaredDist );
}
bool utils::IsOverlapping( const Point2f& a, const Point2f& b, const Rectf& r )
{
// if one of the line segment end points is in the rect
if ( utils::IsPointInRect( a, r ) || utils::IsPointInRect( b, r ) )
{
return true;
}
HitInfo hitInfo{};
Point2f vertices[]{ Point2f {r.left, r.bottom},
Point2f{ r.left + r.width, r.bottom },
Point2f{ r.left + r.width, r.bottom + r.height },
Point2f{ r.left, r.bottom + r.height } };
return Raycast( vertices, 4, a, b, hitInfo );
}
bool utils::IsOverlapping( const Rectf& r1, const Rectf& r2 )
{
// If one rectangle is on left side of the other
if ( ( r1.left + r1.width ) < r2.left || ( r2.left + r2.width ) < r1.left )
{
return false;
}
// If one rectangle is under the other
if ( r1.bottom > ( r2.bottom + r2.height ) || r2.bottom > ( r1.bottom + r1.height ) )
{
return false;
}
return true;
}
bool utils::IsOverlapping( const Rectf& r, const Circlef& c )
{
// Is center of circle in the rectangle?
if (IsPointInRect(c.center, r))
{
return true;
}
// Check line segments
if (utils::DistPointLineSegment(c.center, Point2f{ r.left, r.bottom }, Point2f{ r.left, r.bottom + r.height }) <= c.radius)
{
return true;
}
if ( utils::DistPointLineSegment( c.center, Point2f{ r.left, r.bottom }, Point2f{ r.left + r.width, r.bottom } ) <= c.radius )
{
return true;
}
if (utils::DistPointLineSegment(c.center, Point2f{ r.left + r.width, r.bottom + r.height }, Point2f{ r.left, r.bottom + r.height }) <= c.radius)
{
return true;
}
if (utils::DistPointLineSegment(c.center, Point2f{ r.left + r.width, r.bottom + r.height }, Point2f{ r.left + r.width, r.bottom }) <= c.radius)
{
return true;
}
return false;
}
bool utils::IsOverlapping( const Circlef& c1, const Circlef& c2 )
{
// squared distance between centers
float xDistance{ c1.center.x - c2.center.x };
float yDistance{ c1.center.y - c2.center.y };
float squaredDistance{ xDistance * xDistance + yDistance * yDistance };
float squaredTouchingDistance{ (c1.radius + c2.radius) * (c1.radius + c2.radius) };
return (squaredDistance < squaredTouchingDistance);
}
bool utils::IsOverlapping( const Point2f& a, const Point2f& b, const Circlef& c )
{
return utils::DistPointLineSegment( c.center, a, b ) <= c.radius;
}
bool utils::IsOverlapping( const std::vector<Point2f>& vertices, const Circlef& c )
{
return IsOverlapping( vertices.data( ), vertices.size( ), c );
}
bool utils::IsOverlapping( const Point2f* vertices, size_t nrVertices, const Circlef& c )
{
// Verify whether one of vertices is in circle
for ( size_t i{ 0 }; i < nrVertices; ++i )
{
if ( IsPointInCircle( vertices[i], c ) )
{
return true;
}
}
// Verify whether one of the polygon edges overlaps with circle
for ( size_t i{ 0 }; i < nrVertices; ++i )
{
if ( DistPointLineSegment( c.center, vertices[i], vertices[( i + 1 ) % nrVertices] ) <= c.radius )
{
return true;
}
}
// No overlapping with edges, verify whether circle is completely inside the polygon
if ( IsPointInPolygon( c.center, vertices, nrVertices ) )
{
return true;
}
return false;
}
bool utils::IsPointInPolygon( const Point2f& p, const std::vector<Point2f>& vertices )
{
return IsPointInPolygon( p, vertices.data( ), vertices.size( ) );
}
bool utils::IsPointInPolygon( const Point2f& p, const Point2f* vertices, size_t nrVertices )
{
if ( nrVertices < 2 )
{
return false;
}
// 1. First do a simple test with axis aligned bounding box around the polygon
float xMin{ vertices[0].x };
float xMax{ vertices[0].x };
float yMin{ vertices[0].y };
float yMax{ vertices[0].y };
for ( size_t idx{ 1 }; idx < nrVertices; ++idx )
{
if (xMin > vertices[idx].x)
{
xMin = vertices[idx].x;
}
if (xMax < vertices[idx].x)
{
xMax = vertices[idx].x;
}
if (yMin > vertices[idx].y)
{
yMin = vertices[idx].y;
}
if (yMax < vertices[idx].y)
{
yMax = vertices[idx].y;
}
}
if (p.x < xMin || p.x > xMax || p.y < yMin || p.y > yMax)
{
return false;
}
// 2. Draw a virtual ray from anywhere outside the polygon to the point
// and count how often it hits any side of the polygon.
// If the number of hits is even, it's outside of the polygon, if it's odd, it's inside.
int numberOfIntersectionPoints{0};
Point2f p2{ xMax + 10.0f, p.y }; // Horizontal line from point to point outside polygon (p2)
// Count the number of intersection points
float lambda1{}, lambda2{};
for ( size_t i{ 0 }; i < nrVertices; ++i )
{
if ( IntersectLineSegments( vertices[i], vertices[( i + 1 ) % nrVertices], p, p2, lambda1, lambda2 ) )
{
if ( lambda1 > 0 && lambda1 <= 1 && lambda2 > 0 && lambda2 <= 1 )
{
++numberOfIntersectionPoints;
}
}
}
if (numberOfIntersectionPoints % 2 == 0)
{
return false;
}
else
{
return true;
}
}
bool utils::IntersectLineSegments( const Point2f& p1, const Point2f& p2, const Point2f& q1, const Point2f& q2, float& outLambda1, float& outLambda2, float epsilon )
{
bool intersecting{ false };
Vector2f p1p2{ p1, p2 };
Vector2f q1q2{ q1, q2 };
// Cross product to determine if parallel
float denom = p1p2.CrossProduct( q1q2 );
// Don't divide by zero
if ( std::abs( denom ) > epsilon )
{
intersecting = true;
Vector2f p1q1{ p1, q1 };
float num1 = p1q1.CrossProduct( q1q2 );
float num2 = p1q1.CrossProduct( p1p2 );
outLambda1 = num1 / denom;
outLambda2 = num2 / denom;
}
else // are parallel
{
// Connect start points
Vector2f p1q1{ p1, q1 };
// Cross product to determine if segments and the line connecting their start points are parallel,
// if so, than they are on a line
// if not, then there is no intersection
if (std::abs( p1q1.CrossProduct(q1q2) ) > epsilon)
{
return false;
}
// Check the 4 conditions
outLambda1 = 0;
outLambda2 = 0;
if (utils::IsPointOnLineSegment(p1, q1, q2) ||
utils::IsPointOnLineSegment(p2, q1, q2) ||
utils::IsPointOnLineSegment(q1, p1, p2) ||
utils::IsPointOnLineSegment(q2, p1, p2))
{
intersecting = true;
}
}
return intersecting;
}
bool utils::Raycast( const std::vector<Point2f>& vertices, const Point2f& rayP1, const Point2f& rayP2, HitInfo& hitInfo )
{
return Raycast( vertices.data( ), vertices.size( ), rayP1, rayP2, hitInfo );
}
bool utils::Raycast( const Point2f* vertices, const size_t nrVertices, const Point2f& rayP1, const Point2f& rayP2, HitInfo& hitInfo )
{
if ( nrVertices == 0 )
{
return false;
}
std::vector<HitInfo> hits;
Rectf r1, r2;
// r1: minimal AABB rect enclosing the ray
r1.left = std::min( rayP1.x, rayP2.x );
r1.bottom = std::min( rayP1.y, rayP2.y );
r1.width = std::max( rayP1.x, rayP2.x ) - r1.left;
r1.height = std::max( rayP1.y, rayP2.y ) - r1.bottom;
// Line-line intersections.
for ( size_t idx{ 0 }; idx <= nrVertices; ++idx )
{
// Consider line segment between 2 consecutive vertices
// (modulo to allow closed polygon, last - first vertice)
Point2f q1 = vertices[( idx + 0 ) % nrVertices];
Point2f q2 = vertices[( idx + 1 ) % nrVertices];
// r2: minimal AABB rect enclosing the 2 vertices
r2.left = std::min( q1.x, q2.x );
r2.bottom = std::min( q1.y, q2.y );
r2.width = std::max( q1.x, q2.x ) - r2.left;
r2.height = std::max( q1.y, q2.y ) - r2.bottom;
if ( IsOverlapping( r1, r2 ) )
{
float lambda1{};
float lambda2{};
if ( IntersectLineSegments( rayP1, rayP2, q1, q2, lambda1, lambda2 ) )
{
if ( lambda1 > 0 && lambda1 <= 1 && lambda2 > 0 && lambda2 <= 1 )
{
HitInfo linesHitInfo{};
linesHitInfo.lambda = lambda1;
linesHitInfo.intersectPoint = Point2f{ rayP1.x + ( ( rayP2.x - rayP1.x ) * lambda1 ), rayP1.y + ( ( rayP2.y - rayP1.y ) * lambda1 ) };
linesHitInfo.normal = Vector2f{ q2 - q1 }.Orthogonal( ).Normalized( );
hits.push_back(linesHitInfo);
}
}
}
}
if ( hits.size( ) == 0 )
{
return false;
}
// Get closest intersection point and copy it into the hitInfo parameter
hitInfo = *std::min_element
(
hits.begin( ), hits.end( ),
[]( const HitInfo& first, const HitInfo& last )
{
return first.lambda < last.lambda;
}
);
return true;
}
bool utils::IsPointOnLineSegment( const Point2f& p, const Point2f& a, const Point2f& b )
{
Vector2f ap{ a, p }, bp{ b, p };
// If not on same line, return false
if ( abs( ap.CrossProduct( bp ) ) > 0.001f )
{
return false;
}
// Both vectors must point in opposite directions if p is between a and b
if ( ap.DotProduct( bp ) > 0 )
{
return false;
}
return true;
}
float utils::DistPointLineSegment( const Point2f& p, const Point2f& a, const Point2f& b )
{
Vector2f ab{ a, b };
Vector2f ap{ a, p };
Vector2f abNorm{ ab.Normalized() };
float distToA{ abNorm.DotProduct(ap) };
// If distToA is negative, then the closest point is A
// return the distance a, p
if ( distToA < 0 )
{
return ap.Length( );
}
// If distToA is > than dist(a,b) then the closest point is B
// return the distance b, p
float distAB{ ab.Length() };
if ( distToA > distAB )
{
return Vector2f{ b, p }.Length( );
}
// Closest point is between A and B, calc intersection point
Vector2f intersection{ abNorm.DotProduct(ap) * abNorm + Vector2f{ a } };
return Vector2f{ p - intersection }.Length( );
}
bool utils::IntersectRectLine(const Rectf& r, const Point2f& p1, const Point2f& p2, float& intersectMin, float& intersectMax)
{
// Parameters
// input:
// r: axis aligned bounding box, start and end points of line segment.
// p1, p2: line
// output:
// intersectMin and intersectMax: in the interval [0,1] if intersection point is on the line segment.
// return
// true if there is an intersection
// Example of how to use
//float min{};
//float max{};
//if (utils::IntersectRectLine(rect, p1, p2, min, max))
//{
// Point2f intersectP1{ p1 + (Vector2f(p2) - Vector2f(p1)) * min };
// Point2f intersectP2{ p1 + (Vector2f(p2) - Vector2f(p1)) * max };
//}
// 4 floats to convert rect space to line space
// x1: value between 0 and 1 where 0 is on p1 and 1 is on p2, <0 and >1 means intersection is not on line segment
float x1{ (r.left - p1.x) / (p2.x - p1.x) };
float x2{ (r.left + r.width - p1.x) / (p2.x - p1.x) };
float y1{ (r.bottom - p1.y) / (p2.y - p1.y) };
float y2{ (r.bottom + r.height - p1.y) / (p2.y - p1.y) };
using std::max; using std::min;
float tMin{ max(min(x1,x2),min(y1,y2)) };
float tMax{ min(max(x1,x2), max(y1,y2)) };
if (tMin > tMax)
{
return false;
}
intersectMin = tMin;
intersectMax = tMax;
return true;
}
#pragma endregion CollisionFunctionality
int utils::randRange(int min, int max) {
return min + rand() % (( max + 1 ) - min);
}